Improved Fusing Infrared and Electro-Optic Signals for High Resolution Night Images

نویسندگان

  • Xiaopeng Huang
  • Ravi Netravali
  • Hong Man
  • Victor Lawrence
چکیده

Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects with infrared (IR), especially for objects with similar temperatures. In earlier work, we proposed a novel framework for IR image enhancement based on the information (e.g., edge) from EO images. Our framework superimposed the detected edges of the EO image with the corresponding transformed IR image. Obviously, this framework resulted in better resolution IR images that help distinguish objects at night. For our IR image system, we used the theoretical point spread function (PSF) proposed by Russell C. Hardie et al., which is composed of the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we designed an inverse filter based on the proposed PSF to transform the IR image. In this paper, blending the detected edge of the EO image with the corresponding transformed IR image and the original IR image is the principal idea for improving the previous framework. This improved framework requires four main steps: (1) inverse filter-based IR image transformation, (2) image edge detection, (3) images registration, and (4) blending of the corresponding images. Simulation results show that blended IR images have better quality over the superimposed images that were generated under the previous framework. Based on the same steps, the simulation result shows a blended IR image of better quality when only the original IR image is available.

منابع مشابه

Fusing electro-optic and infrared signals for high resolution night images

Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects at night through infrared (IR) images, especially for objects with a similar temperature. Therefore, we will propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which will result in high resolution IR images a...

متن کامل

Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the reso...

متن کامل

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012